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Abstract. 31 highly accurate, experimentally measured, structure factors of silicon for
reflections from (111) to (880) are used to test various approximations for exchange and
correlation potentials. Specifically, the Hartree–Fock method and some of its extensions, and the
density functional theory in the local density approximation (LDA), and two newly developed
refinements, namely the generalized gradient approximations (GGAs) of Perdew and Wang
(Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C
1992Phys. Rev.B 46 6671) and Engel and Vosko (Engel E and Vosko S H 1993Phys. Rev.B
47 13 164) are used. The multi-configuration Hartree–Fock method including relativistic effects
gives the best description of the core electron densities. The charge density calculated with
the GGA of Perdew and Wang leads to structure factors which deviate from experimental data
only half as much as previously reported LDA results. The improvement comes mainly from
the description of the core charge density. The GGA of Engel and Vosko is even better for
the core electrons, but the valence electrons are not described as well. The experimental and
theoretical description of the covalent bonding in silicon is studied by means of difference maps
and multipole expansions. The limitation of the multipole model is investigated by fitting both
experimental and theoretical charge densities.

1. Introduction

Accurately measured structure factors of silicon provide an excellent test for the charge
densities calculated from various solid-state theories. The de facto standard test of theoretical
approximations is based either on single-particle energies (comparing e.g. ionization
potentials or band gaps) or on quantities derived from the total energy, like equilibrium
lattice constants and bulk moduli. In the former case, excited states are involved, and thus
density functional theory (DFT), which is designed for ground-state properties, cannot be
applied rigorously. This is in contrast to the latter case, namely a comparison of structural
parameters, a standard test for theory, which does not, however, offer significant insight
into chemical bonding. On the other hand, the crystal charge density is a ground-state
property and is the key quantity in DFT. It is quite sensitive to the crystal potential and
provides valuable three-dimensional information. The main limitation in using the charge
density is its availability. While energy levels and structural properties can be measured
very precisely, the charge density is generally less accurately known. An exception is the
case of silicon, since large, perfect single crystals can be grown and the highly accurate
x-ray pendell̈osung technique can be applied [1]. Unfortunately, for other materials, such
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accurate structure factors are rarely available. However, the recent development in electron
diffraction methods promises to change this picture [2].

Compared to the experimental measurement of charge densities, their theoretical
computation is relatively straightforward due to the advances in solid-state theory and
the availability of highly sophisticated algorithms, such as the full-potential linearized-
augmented-plane-wave (LAPW) and the linear-combination-of-atomic-orbitals Hartree–
Fock (LCAO-HF) methods. In the case of silicon, the best agreement between theory
and experiment previously reported gave anR-factor of 0.21% [3]. This is a low value
compared with the often significantly largerR-factor for different x-ray measurements based
on the kinematical approximation. The largest effect of charge redistribution due to chemical
bonding in silicon is on the low-order reflections withs (≡(sinθ)/λ) smaller than 0.4̊A−1.
The extinction effect in these low-order reflections is usually large, and is the main factor
limiting the accuracy of kinematical methods. For the high-order reflections, the difference
between the structure factors of the real crystal and a superposition of neutral spherical atoms
is usually small. In the case of Si, this difference is less than 0.01× 10−3 electrons/atom
for s > 0.6 Å−1. For this reason most experimental measurements of charge distributions
usually involve a limited number of low-order reflections.

For the charge density of silicon, experimental structure factors for up to reflection
(880) are available from five independent measurements by Aldred and Hart [1], Teworte
and Bonse [4] and Saka and Kato [5] made using the x-ray single-crystal pendellösung
method. Additional measurements for specific reflections were also made by means of
electron diffraction [6, 7]. The consolidation of x-ray data sets by Cumming and Hart [8]
shows an averaged accuracy of 3–5× 10−3 electrons/atom. The theoretical charge density
of silicon has also been calculated by a number of methods (for a selective listing see [9]).
An early comparison of the experimental and theoretical results was made by Spackman
[10]. Since then, the agreement between theory and experiment has been substantially
improved with the more recent calculations of [3, 9] using the LAPW method which are
based on DFT and the LCAO-HF method [11], respectively. The LAPW calculations of
[3] used the local density approximation (LDA) for the exchange and correlation potential.
The residual difference between the theoretical structure factors of [3] and experiment is
still large compared to the estimated experimental accuracy. This difference is systematic
rather than random and is as large as 20× 10−3 electrons, about ten times the estimated
experimental accuracy. The largest differences occur for reflections from (311) to (440), with
the exception of (222), and are all negative. This suggests a significant deviation between
the experimental and calculated charge density in the core region up to around 0.6Å from
the nucleus. The Hartree–Fock LCAO study made by Pisaniet al [11] using the CRYSTAL
program is in better agreement with experiment for the high-order reflections. However,
their low-order structure factors obtained with an optimized basis set (corresponding to the
lowest total energy) differ significantly from experiment.

Theoretically, there are two fundamentally different ways to treat exchange and
correlation effects: one is based on the Hartree–Fock (HF) approximation and the other
uses density functional theory (DFT). In the HF method, exchange is given exactly, while
correlation effects are (by definition) completely neglected but can be incorporated by means
of elaborate techniques such as the configuration interaction method. In DFT both exchange
and correlation effects are included, but in practice only approximately. The simplest version
is based on the homogeneous electron gas and leads to the LDA. If not only the density
ρ(r) at a given pointr, but in addition also its gradient, are used to determine exchange
and correlation, then a generalized gradient approximation (GGA) can be formulated which
satisfies various physical constraints. Among the various forms of GGA which have been
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proposed, the functional of Perdew and Wang (PW91) [12] is the most commonly used and
tested. It is constructed by means of a real-space cut-off of the spurious long-range part of
the density gradient expansion for the exchange–correlation hole surrounding an electron.
It gives a good description of the atomic energy, largely due to a cancellation of local errors
[14], but the corresponding exchange–correlation potential is a derived quantity which does
not agree too well with the exact potential. Improvements of the cohesive energy of solids
have been reported for PW91-GGA calculations [12, 13], but in some cases, where the LDA
already gives good lattice constants and bulk moduli, the GGA tends to overcorrect the LDA
results [13]. Engel and Vosko (EV) [14] proposed a different GGA functional based on the
virial relation for the exchange energy, which is intended to reduce the local error in the
exchange potential. However, it has been found that the EV total energies are poor, which
leads to large discrepancies with experimental structural parameters (see e.g. Dufeket al
[38]). Both versions of the GGA, PW91 and EV, are tested in this paper. The systematic
differences between the LDA results of [3] and experiment for the high-order reflections
are probably due to the inadequate treatment of core electrons within the LDA. To test the
effect of improved exchange and correlation potentials on the charge density, we will study
the charge density using the GGA.

In studying crystal bonding, the charge-density difference between the crystal and an
atomic reference is often used. For theoretical studies, it is natural to use an atomic reference
calculated with the same approximation as for the solid. However, for experimental
studies, the choices are not so clear. Commonly used atomic charge densities in diffraction
studies are the relativistic Hartree–Fock calculations of Doyle and Turner listed in the
International Tables for Crystallography[15] and the parametrized non-relativistic Hartree–
Fock calculations of Clementi and Roetti [16]. These are single-configurational calculations,
which ignore electron correlation. More recently, there have been new calculations of atomic
charge densities including different approximations for correlation effects. Rez and Rez [17]
used the multi-configurational Dirac–Fock (MCDF) method of Grantet al [18] for the entire
periodic table. A more limited calculation for the elements from He to Ar was carried out
by Wanget al [19] again using the MCDF method, but without the extended average-level
model [18] applied in [17]. Meyeret al [20] reported atomic scattering factors using a
multi-reference singly and doubly excited configuration interaction method. Here, we will
compare various atomic charge densities for silicon. The core electron density will be tested
against the experimental high-order structure factors of silicon, where the contribution of
valence electrons is negligible.

In this paper, we will also compare the theoretical and experimental crystal charge
densities by model fitting. One of the important questions about the crystal bonding is that
of whether an atom expands or contracts in the crystal environment. Recent measurements
of the silicon mean potential report a substantially lower value than for a neutral spherical
atom [21], which suggests an overall contraction of the Si atom in the crystal [22]. This is
in contrast to the results of a multipole analysis, which gives a∼6% valence expansion [1]
and a 0.5% L-shell expansion [23]. The result of a multipole analysis hinges on the validity
of the model, especially the significance of individual parameters in the fitting model.
By applying the model analysis to both experimental and theoretical structure factors, the
validity of the multipole model will be studied.

2. Experimental structure factors of Si

The room temperature experimental structure factors of silicon used here are taken from
the consolidated set of Cumming and Hart (CH) [8] and the Saka and Kato (SK) [5] set.
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Table 1. Room temperature experimental and theoretical form factors of silicon in units of
number of electrons per atom. The experimental data, which were corrected for the anomalous
absorption and nuclear scattering, are taken from Cumming and Hart [8] and Saka and Kato [5]
with those from [5] marked with asterisks. The estimated errors (given in parentheses) for the
data set of [8] are taken from reference [25]. The theoretical scattering factor is multiplied by
the temperature factor exp(−0.4668g2/4).

MCDF- LAPW- LAPW- LAPW- HF-
(h, k, l) Experiment MCDFa WBSJb CIc LDA d GGAe GGA(EV)f LCAOg

111 10.6025(29) 10.4160 10.4273 10.4391 10.5995 10.6065 10.6605 10.598

220 8.3881(22) 8.4432 8.4423 8.4497 8.3952 8.3929 8.3752 8.3902

311 7.6814(19) 7.8216 7.8198 7.8203 7.6909 7.6897 7.6670 7.6813

222 0.182(1) 0.0000 0.0000 0.0000 0.161 47 0.166 43 0.180 88 0.187 86

400 6.9958(12) 7.0532 7.0522 7.0460 6.9933 7.0007 7.0025 7.0042

331 6.7264(20) 6.6692 6.6687 6.6611 6.7031 6.7149 6.7221 6.7370

422 6.1123(22) 6.1015 6.1016 6.0938 6.0897 6.1028 6.1146 6.1130

333 5.7806(21) 5.7935 5.7939 5.7858 5.7552 5.7688 5.7845 5.7632

511 5.7906(27) 5.7935 5.7939 5.7858 5.7761 5.7895 5.8044 5.8018

440 5.3324(20) 5.3244 5.3249 5.3182 5.3136 5.3270 5.3377 5.3375

531∗ 5.0655(17) 5.0664 5.0670 5.0607 5.0490 5.0621 5.0731

620∗ 4.6707(9) 4.6713 4.6720 4.6659 4.6561 4.6685 4.6786

533∗ 4.4552(11) 4.4535 4.4542 4.4487 4.4444 4.4558 4.4649

444 4.1239(18) 4.1194 4.1200 4.1165 4.1085 4.1192 4.1268 4.1210

711∗ 3.9282(22) 3.9349 3.9355 3.9328 3.9229 3.9331 3.9381

551 3.9349(34) 3.9349 3.9355 3.9328 3.9248 3.9348 3.9403 3.9359

642 3.6558(54) 3.6516 3.6522 3.6499 3.6427 3.6519 3.6561 3.6513

731∗ 3.4919(11) 3.4949 3.4955 3.4933 3.4869 3.4956 3.4992

553∗ 3.5055(14) 3.4949 3.4955 3.4933 3.4883 3.4972 3.5011

800 3.2485(34) 3.2540 3.2545 3.2526 3.2470 3.2549 3.2563 3.2518

733∗ 3.1270(14) 3.1204 3.1210 3.1193 3.1154 3.1229 3.1239

822∗ 2.9111(15) 2.9145 2.9150 2.9139 2.9105 2.9172 2.9173

660 2.9143(16) 2.9145 2.9150 2.9139 2.9105 2.9172 2.9174 2.9121

555 2.8009(21) 2.8002 2.8007 2.7999 2.7947 2.8009 2.7998 2.7945

751∗ 2.8006(25) 2.8002 2.8007 2.7999 2.7976 2.8039 2.8037

840∗ 2.6200(7) 2.6236 2.6240 2.6239 2.6219 2.6276 2.6266

911∗ 2.5325(8) 2.5253 2.5257 2.5259 2.5242 2.5296 2.5279

753∗ 2.5274(29) 2.5253 2.5257 2.5259 2.5229 2.5282 2.5264

664∗ 2.3677(9) 2.3731 2.3735 2.3742 2.3733 2.3781 2.3760

844 2.1506(24) 2.1564 2.1568 2.1580 2.1581 2.1622 2.1597 2.1531

880 1.5325(26) 1.5317 1.5319 1.5340 1.5370 1.5390 1.5360 1.5289

a Calculated with the atomic charge density of [17]; for details, see the text.
b Calculated with the atomic scattering factors listed in [19].
c Calculated with the atomic scattering factors listed in [20].
d The crystal scattering factor calculated with the LAPW and the LDA for exchange and correlation.
e The crystal scattering factor calculated with the LAPW and the PW91-GGA [12].
f The crystal scattering factor calculated with the LAPW and the GGA of Engel and Vosko [14].
g Taken from reference [11]; obtained using Hartree–Fock LCAO method.
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The CH data set is less complete than the SK set. The CH data set is the average of the
experimental measurements by Aldred and Hart [1] and Teworte and Bonse [4] with Ag
Kα1 and Mo Kα1 wavelengths plus the measurements of Saka and Kato [5]. For monatomic
Si crystal, it is convenient to discuss the form factor of Si, which is related to the structure
factor by

f (h, k, l) = F(h, k, l)
/

8 cos

(
π

4
(h+ k + l)

)
. (1)

For (222), f (h, k, l) = F(h, k, l)/4. Table 1 lists both the experimental form factors
f (h, k, l) and their estimated errors, with those from the SK data set marked with asterisks.
f (222) is taken from the measurement of Alkire, Yelon and Schneider [24]. The estimated
error for the data set of CH is taken from reference [23], which is the average of the
estimated errors given by [1] and [4]. The estimated error of [23] is somewhat smaller
than the actual fluctuations from the mean found in the five measurements; for example
in the case of (111), the averaged standard error from the five measurements is about
5.1× 10−3 electrons/atom and the estimated error given by [23] is 2.9× 10−3 electrons.
Among the five experimental data sets, the Saka and Kato measurements appear to be the
best, giving the lowest standard deviation (average about 3.6 × 10−3 electrons) from the
averaged structure factors of CH [8]. For the low-order structure factors, such as (111),
the estimated accuracy reported by Saka and Kato [5] is significantly higher than those
from other measurements. The experimental x-ray structure factors were corrected for
anomalous dispersion and nuclear scattering [8]. The anomalous dispersion was taken
from the measurements of Deutsch and Hart [25]. In table 1, the corrected structure
factors of the SK data set are taken from table 2 of Lu and Zunger [3]. Structure
factors of silicon have also been measured by means of electron diffraction [7, 6], for
which, in contrast to the case for x-ray diffraction, anomalous dispersion is small and
negligible. The electron diffraction measurement of [7] givesf (111) = 10.613(7) and
f (222) = 0.186(4), in good agreement with the x-ray measurements. In particular, the
electron diffraction measurement of (222) includes both amplitude and phase [26], while
the measurement of Alkireet al [24] is for the amplitude only. The agreement between
electron and x-ray results independently confirms the anomalous dispersion correction used
by [8].

The charge density of real crystals is affected by both chemical bonding and thermal
vibrations. In the adiabatic harmonic approximations for thermal vibrations, the measured
silicon crystal charge density is simply the convolution of the static charge density and the
temperature factor:

F(h, k, l) = F s(h, k, l)exp[−B(h2+ k2+ l2)/4a2]. (2)

HereF s(h, k, l) is the static structure factor. The temperature factor is a Gaussian function
with the Debye–Waller factorB as a parameter, which describes the temperature effect due
to atomic motions on the charge density. The separation of the crystal charge density into a
static atomic density and a temperature factor is conceptual in this case; it does not affect the
structure factor formula of equation (2) as long as we assume the same thermal vibrations for
all electrons. The contribution of anharmonic thermal vibrations to the structure factor has
been obtained by Batterman and co-workers [39] by measuring the temperature dependence
of forbidden reflection intensities with both x-ray and neutron diffraction. The reported
anharmonic force constantβ ranges from 1.38 to 3.38 eV̊A−3, assuming an isolated-atom
model of thermal vibrations [27]. However, there is little evidence for such a large upper
limit of β from the structure factors measured at room temperature. Refinements by Deutsch
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[23] indicate an upper limit of 0.8 eV̊A−3 for β. In view of this controversy, the effect of
anharmonic thermal vibration will be ignored in the initial analysis and further discussed in
section 7.

3. Theoretical structure factors of Si

Several theoretical structure factors are included in this study. Our LAPW calculations
of the crystal charge density were carried out with both the LDA and the GGA. The
LAPW program used here is theWIEN 95package written by Blaha, Schwarz, Dufek and
Augustyn of the Technical University of Vienna [28, 29]. For the LDA functional the
Perdew and Wang parametrization of the Ceperley and Alder results [30] is used, while for
the GGA both the functional PW91 [12] and that of Engel and Vosko [14] are employed.
Our LAPW method treats core and valence electrons equally, and the charge densities are
obtained self-consistently. The parameters involved in the calculation are numerical in
nature, controlling the convergence of the calculations. We have used 72k-points in the
irreducible Brillouin zone, a maximum angular momentum for the radial wave functions
lmax = 10, a muffin-tin radius 1.8 au, 381 (661 for the GGA) logarithmic radial mesh
points inside the atomic spheres and a plane-wave cut-off ofRMTKmax = 8 or 9. Both the
muffin-tin radius and the number ofk-points are varied to ensure convergence. The structure
factors calculated using the LDA agree with the results published by Lu and Zunger [3]
to better than 2× 10−3 electrons/atom. For the GGA, 661 radial mesh points up to the
muffin-tin radius was found to be sufficient. The structure factors are calculated by means
of a Fourier transformation of the LAPW charge density [28, 29].

We also compare here the published structure factors of the HF-LCAO calculations by
Pisani, Dovesi and Orlando [11], who included the reflections of the data set from [8].
This provides a comparison between HF and LDA results for crystals. Here we use the
data set marked in their study as 8-41G∗∗, although their 8-41G∗ set agrees better with
the experimental structure factors. The difference between these two is that in 8-41G∗

the outer exponent of the sp-Gaussian-type orbital (GTO) is fixed, while in 8-41G∗∗ it
is variationally optimized, resulting in a less diffuse outer sp GTO and also in a lower
total energy. Originally, Pisaniet al [11] compared their results with the experimental
structure factors listed by Spackman [10] rather than the consolidated data of [8], but later
a comparison with the 8-41G∗∗ results was made in [9].

Structure factors simply calculated according to a superposition of neutral atomic
densities are also included in this study. The atomic scattering factors are obtained from
two different approaches; one is based on Hartree–Fock (HF) or Dirac–Fock (DF) theory
in the relativistic case, and the other is based on DFT (the Hartree–Fock–Slater (HFS)
or Dirac–Slater (DS) theory in the relativistic case). The DF atomic scattering factors
are obtained from the charge density of [17], where the multi-configurational Dirac–Fock
(MCDF) program of Grantet al [18] was used. The DS calculations are done with a
modified program written by Desclaux [31], which is part of theWIEN 95package [28].
In both cases, atomic scattering factors are obtained by numerical integration with a three-
point Simpson rule on a logarithmic radial mesh. The atomic scattering factors of MCDF
theory are slightly different from those originally published by [17], probably due to the
difference in the numerical integration. A number of published atomic charge densities for
silicon are also included here for comparison. The atomic scattering factors of Clementi and
Roetti [16] have been obtained using the non-relativistic Hartree–Fock–Roothaan method.
The Clementi and Roetti atoms are popular in x-ray diffraction due to the Slater orbital
form of the parametrization. Fourier transformation of the Slater orbitals is carried out
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with a program provided by O’Keeffe [32]. We have also included the recently published
atomic scattering factors of [19] and [20], which were obtained using MCDF theory and the
multi-reference singly and doubly excited configuration interaction method, respectively.
They are included to show the effects of electron correlation on atomic charge densities.
The relativistic HF scattering factors of Doyle and Turner from theInternational Tables for
Crystallography[15] are also compared here.

All of the theoretical structure factors are calculated with a lattice constant ofa =
5.4307 Å [33], with the exception of the HF-LCAO results [11], which usea = 5.431 Å.
To compare with experiment, all of the theoretical structure factors are multiplied by a
temperature factor of exp(−Bg2/4) with B = 0.4668Å2 described in the next section.

Table 2. A comparison between the experimental and theoretical form factors for (440) and
higher with the Debye–Waller factor as a free parameter. TheR-factor and GOF are defined
as follows: R = ∑ |f theory− f exp|/|f exp|; GOF= (1/N)∑N

i=1 (1/σ
2
i )(f

theory
i − f exp

i )2. The
GOF is calculated with the average variance of 0.00222. For details, see the text. For the
abbreviations not given in the footnotes, see table 1.

B (Å2) R-factor (%) GOF

HFRa 0.4628 0.114 4.8
RHFb 0.4668 0.112 4.6
MCDF 0.4668(6) 0.111 4.5
MCDF-WSBJ 0.4671 0.112 4.6
CI (MR-SD) 0.4667 0.145 7.2
DS-LDAc 0.4635 0.28 31
DS-GGAd 0.4670 0.21 17
DS-GGA(EV)e 0.4669 0.14 6.8
LAPW-LDA 0.4652 0.21 15
LAPW-GGA 0.4687 0.14 6.2
LAPW-GGA(EV) 0.4689 0.118 4.4
LCAO-HFf 0.4654(7) 0.105 3.6

a Calculated with the atomic charge density of reference [16].
b Calculated with the atomic scattering factors listed in reference [15].
c The atomic scattering factor obtained using the Dirac–Slater method and the LDA.
d The atomic scattering factor obtained using the Dirac–Slater method and the PW91-GGA.
e The atomic scattering factor obtained using the Dirac–Slater method and the GGA of Engel
and Vosko.
f Evaluated with the data set of [8] and nine reflections.

4. Comparison of the experimental and theoretical structure factors

Table 1 lists selected experimental and theoretical form factors at room temperature. For low
indices there are obvious differences between the experimental structure factors and atomic
structure factors, especially for (111), because the crystal bonding is neglected. However,
this difference diminishes asg increases. Figure 1 plots the shell-by-shell contributions
to the atomic scattering (form) factor obtained using the MCDF method, from which we
can see the well known feature that the high-order structure factors are dominated by
the core electrons, especially the 1s electrons. Thus the accurately measured high-order
structure factors can be used to test the core part of the atomic calculations. Table 2
shows a comparison between theory and experiment based on 22 form factors for the
reflections from (440) to (880) using the goodness-of-fit (GOF) andR-factor criteria. In
this comparison the Debye–Waller factorB is treated as an adjustable parameter. The
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Figure 1. Shell-by-shell contributions to the atomic scattering factor of Si calculated by the
MCDF method.

GOF is evaluated with a mean estimated variance ofσ 2 = 0.00222. This mean variance
is used because of the concern about the reliability of the estimated accuracy of each
reflection, especially for the SK data set [5]. The best agreement with the high-order
reflections is obtained with the HF-LCAO calculations of Pisaniet al [11], for which the
comparison was made with the nine available reflections ((440) and higher). Among the
atomic models, both theR-factor and GOF criteria indicate that correlated Hartree–Fock
models are better than approaches based on DFT. Specifically, the atomic scattering factors
of MCDF calculations yield the best results with anR-factor of 0.11%, a GOF of 4.5 and
a Debye–Waller factor ofB = 0.4668 Å2. Among the atomic charge densities calculated
using the Dirac–Slater method, the GGA of Engel and Vosko gives the best description of
the high-order structure factors. ItsR-factor of 0.14% is significantly lower than those of the
PW91-GGA and the LDA. Using the same approximation for the exchange and correlation,
the LAPW crystal calculation is always better than the atomic one. Presumably, this is due
to the small but non-negligible crystal bonding effects for these high-order reflections. The
same can be said to the improvement of the crystalline HF-LCAO results over similar
atomic calculations [16]. The LAPW calculation with the GGA gives a factor-of-two
improvement over the LDA. The GOF of 4.5 obtained with the MCDF atomic scattering
factor suggests that not all of the information in the experimental data is exhausted. Possible
improvements can come from a better description of crystal bonding and anharmonic effects.
For the high-order reflections, the atomic scattering factors obtained with the RHF (Doyle
and Turner [15]) and MCDF [17, 19] methods are very similar, with almost the same
R-factor and Debye–Waller factor. The Clementi and Roetti atomic structure factors
give a significantly smaller Debye–Waller factor than the RHF or MCDF methods. The
difference is probably due to the neglect of relativistic effects in the HF method used
in [16], which results in slightly lower contributions to the high-angle scattering factors.
Also the recently published (non-relativistic) atomic scattering factors obtained by Meyer
et al [20] using multi-reference singly and doubly excited configuration interaction do not
improve upon the Dirac–Fock results and have a significantly higherR-factor and GOF.
This analysis indicates that for the core electrons relativistic effects are more important than
correlation.

Figure 2 plots the difference between radial charge densitiesr2ρ(r) obtained with
the MCDF method and the GGAs and LDA. Figure 2(a) shows the charge-density
difference between LDA and MCDF for each orbital, while figures 2(b) and 2(c) show
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Figure 2. The shell-by-shell charge densityr2ρ(r) difference between the DS atom using GGAs
or the LDA and the MCDF atom; (a) LDA, (b) the PW91-GGA and (c) the GGA of Engel and
Vosko. For details see the text.

the corresponding difference for the of PW91-GGA and the EV-GGA, respectively. The
curves in all three parts of the figure are quite similar in their overall shape. However, the
differences from the ‘exact’ densities obtained using PW91 (figure 2(b)) are already smaller
than for the LDA (figure 2(a)). The EV-GGA further improves the core electron density,
especially for the 2s and 2p electrons, for which the improvement of the PW91-GGA over
the LDA is small. On the other hand, the valence 3s and 3p densities are worse with the
EV-GGA. This visually demonstrates that the improvement in the agreement with the high-
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(a)

(b)

(c)

Figure 3. The form factor difference between theory and experiment for: (a) the LAPW using
the LDA; (b) the LAPW method using the PW91-GGA; (c) the LAPW method using the GGA
of Engel and Vosko; (d) the HF LCAO method of reference [11], where 1 and 2 denote the
basis sets 8-41G∗ and 8-41G∗∗ respectively; and (e) the atomic MCDF model. The form factor
is in units of number of electrons per atom.

order experimental structure factors for the GGA comes from a better core charge density,
and that the EV-GGA is superior to the PW91-GGA in the core region, but worse even
than the LDA in the valence region.

In table 3 the crystal form factors calculated with the LAPW method using the LDA
and both GGAs and the published HF-LCAO results are compared with all 31 experimental
structure factors using the temperature factor ofB = 0.4668 obtained above. The residual
difference between theory and experiment is plotted in figure 3. The best overall agreement
is obtained with the LAPW method using the PW91-GGA, and its lowestR-factor is almost
a factor-of-two improvement over the LDA. The slightly worseR-factor and large GOF for
the EV-GGA is mainly due to the (111) structure factor, which is significantly larger than
that from experiment. Figure 3 also shows that the difference between experiment and the
LAPW method using the LDA or PW91 is systematic. Both PW91 and the LDA consistently
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(d)

(e)

Figure 3. (Continued)

Table 3. A comparison between the experimental and selected theoretical form factors of table 1
with all structure factors included.

LAPW- LAPW- LAPW-
LDA GGA (PW91) GGA (EV) LCAO-HF∗ MCDF

R-factor 0.24% 0.13% 0.18% 0.20% 0.60%
GOF 30 8.8 32 31 632

∗ Evaluated with data set 1 and 18 reflections.

underestimate the scattering factor in thes-range of about 0.4 to 0.8̊A−1 and overestimate
it from 0.8 to 1.1Å−1. The improvement of theR-factor with PW91 is largely due to the
improved description of core electrons as compared to that of the LDA (see above). Such
a systematic trend is almost absent for the GGA of Engel and Vosko.

5. The charge density of silicon

The theoretical static charge density of silicon can be computed with high precision subject
to a well chosen basis set, and a good description of exchange and correlation as well
as relativistic effects. Determination of an experimental charge-density map by Fourier
synthesis using measured structure factors is difficult due to the limited number of structure
factors and their restricted accuracy. However, a comparison between theory and experiment
can still be made based on (1) a truncated Fourier series map of limited resolution and (2)
model fitting with the same limitations on theory and experiment. The truncated Fourier
series limits the resolution of the synthesized map; finite fluctuations can also be introduced
from the sharp cut-off. Fluctuations in the deformation map (defined as the difference
between the crystal and superimposed spherical atomic charge densities) are smaller due to
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Figure 4. A deformation map and a profile along [111] of the Si crystal charge density
synthesized with the 31 independent reflections of table 1. The contour map is plotted with
a increment of 0.04e Å−3 and dashed lines show the charge deficiency. The zero contour level
is marked in each panel. Top panels: experiment; middle panels: the LAPW method using the
LDA; and bottom panel: the LAPW using the PW91-GGA. The profile is taken through the
Si–Si bond. The black lines connect the Si atoms.

the rapidly decreasing difference between the crystal and atomic high-order structure factors.
The limited resolution does not affect the slowly varying charge density between the silicon
atoms much, whereas it does preclude any quantitative comparison of the rapidly varying
charge density in the atomic core region (see below). Figure 4 shows the synthesized
deformation maps obtained using the limited reflections of table 1. The experimental
deformation map uses the MCDF atom as a reference, while DS atoms with the LDA
or PW91-GGA are used for the corresponding LAPW deformation map. The error bars
shown in the top panel of figure 4 were calculated according to Maslen [34]. The LDA
and the PW91-GGA maps both reproduce well the bonding charge-density peak in the
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Figure 5. A high-resolution deformation map synthesized directly from the LAPW basis function
for (top panels) the LDA and (bottom panels) the PW91-GGA. The contour map is plotted with
an increment of 0.04e Å−3 and dashed lines show charge deficiency.

silicon–silicon bond, with peak values of 0.189 and 0.194e Å−3, respectively, compared
to the experimental values of 0.213± 0.003 e Å−3. The largest difference between the
experimental and theoretical deformation maps of figure 4 is that both the LDA and the
GGA predict a significant ‘charge pile-up’ at the atomic site, while the experimental map
shows a relatively flat negative distribution. A high-resolution deformation map synthesized
directly from the LAPW basis function is shown in the top and bottom panels of figure 5
for the LDA and PW91-GGA. The charge ‘pile-up’ observed in figure 4 at the atomic site
is actually due to a strong nodal-type charge-density modulation in the atomic core region,
which is strongly negative at the nucleus and positive in the immediate surrounding area.

The variance at a point in the difference charge-density map is calculated according to
(reference [34])

σ 2(1ρ) =
∑
i

[
2V −1

∑
e

cos(2πsie · r)
]2

σ 2(s) (3)

where thei and e denote the independent and symmetry-related reflections, respectively.
The top panel of figure 4 shows the standard deviation estimated from equation (3). The
interpretation ofσ is difficult because of the correlation between different points in the
difference map arising as the result of the Fourier transformation. For details about the
significance ofσ , see [34]. Alternatively, the reliability of a particular feature of finite size
in the charge-density difference can be determined by applying the standard statistical test
using

χ2 =
∑
s

σ−2(s)[1F(s)]2/v (4)
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where1F is the contribution to the structure factor from the tested part of the difference
map andv is the number of reflections included in the evaluation. To test whether the
oscillations near the core are detectable experimentally, we isolate the oscillating feature
in the theoretical LAPW difference map by its outside zero boundary, neglect the small
non-spherical distortion, and evaluate its contribution to the structure factor by Fourier
transformation. The results are shown in figure 6. Overall, the resulting change in the
structure factor is very small, less than 5× 10−3 electrons/atom in the range of measurable
s-values. Applying equation (4) and using the estimated accuracies listed in table 1, we
obtain aχ2-value of 0.64. This suggests that with the current experimental precision it is
not possible to experimentally verify the existence of the oscillating charge density in the
core region observed in the LAPW difference map.

Table 4. The scaling of the theoretical LAPW core charge density.

1s 2s 2p1/2 2p3/2

GGA (PW91) 1 0.999 58 0.999 24 0.999 25
LDA 1 0.9995 0.999 11 0.999 09

Figure 6. Contributions of the core-region (within a 0.2̊A radius from the Si nucleus) nodal-
type charge modulation in the LAPW difference map to the atomic scattering factor. For details,
see the text.

The silicon 1s2s2p core electrons are considered to be localized, since there is very little
overlap between these core electrons at different sites. Thus the effect on the core electrons
of forming a crystal can be directly studied in the theoretical charge density by comparing
with the respective atomic densities without the usual ambiguity associated with separating
crystal charge densities into atomic contributions. In a previous study, Deutsch [23] reported
a 0.5% L-shell expansion from his multipole model refinement of experimental structure
factors of the CH data set. Figure 7 plots the difference between the radial charge density
r2ρ of the crystal and atomic core electrons from the LAPW calculations, which indicates
that the core electrons expand slightly in the crystal. A direct fitting to each core orbital
shows that the difference between crystal and atomic core electrons can be well described
by scaling. The results are shown in table 4. In both cases, GGA and LDA, the 1s electron
remains virtually unchanged by bonding. The electrons in the L shell expand slightly by
0.09% to 0.04%; this is five to ten times smaller than the expansion estimated by Deutsch
[23]. Figure 7 also shows that the charge-density difference due to the core electrons is
relatively small compared to the charge difference seen in figure 5. This suggests that the
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Figure 7. The difference between the radial charge densityr2ρ(r) of the Si core electrons in
the crystal environment (calculated by means of the LAPW method) and in a free atom.

large fluctuations of figure 5 in the core region are largely due to the valence electrons. A
similar conclusion was reached in [3].

6. Multipole model refinement

In the multipole model given by Dawson [35], Stewart [36] and Coppenset al [37], the
structure factor of silicon is expanded in terms of the Kubic harmonics:

F(h, k, l) ≈ 8 cosφ{fc + δc,4− fa,3 tanφ} exp(−Bs2) (5)

with non-spherical terms in the charge density up to fourth order. The ‘atomic’ scattering
factorsF(h, k, l)/8 cosφ are listed in table 1. Here the phaseφ = (h + k + l)π/4. The
fc, δc,4, and fa,3 are the spherical, fourth- and third-order Kubic harmonic parts of the
generalized ‘atomic’ scattering factor of silicon, respectively. Again, harmonic thermal
vibration is assumed. The spherical termfc is taken as the sum of suitable scaled atomic
orbital scattering factors:

fc(s) =
∑
nl

fnl(s/κnl) (6)

wherenl designates the shell andκnl is a scaling constant for each shell, which is usually
taken as one except for the valence shell. The non-spherical third- and fourth-order terms
are expressed by

fa,3 = O 8πα7

6!

hkl

(h2+ k2+ l2)3/2
∫ ∞

0
r4 exp(−αr)j3(4πsr) dr (7)

δc,4 = H 8πα7

6!

640

27
√

3

[
h2+ k2+ l2
(h2+ k2+ l2)2 − 3/5

] ∫ ∞
0
r4 exp(−αr)j4(4πsr) dr. (8)

These formulae are obtained by assigning a Slater-type functionrn exp(−αr) with n = 4
to the radial part of the wave functions. The scaling constantκnl , exponential coefficientα,
and the occupation numbersO andH are fitting parameters in this multipole model. By
applying this model to both the experimental and the theoretical structure factors, we obtain
the results shown in table 5. The MCDF atomic scattering factors are used in equation
(6) for the experimental charge density, while the GGA and LDA ‘atoms’ are used for the
corresponding LAPW charge densities. The free adjustable parameters here are the scaling
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constants for the L and M shells,O, H andα. The Debye–Waller factor and the scaling of
the L shell were found to be highly correlated for the experimental data. To avoid this, the
Debye–Waller factor is fixed at 0.4668̊A2 as obtained from the measurement with high-
order reflections only. The use of atomic silicon scattering factors for the determination of
the Debye–Waller factor from high-order structure factors is justified, since the theoretical
calculations predict only a very small expansion of the L shell. The scaling of the L shell
for the LAPW structure factors (for both GGA and LDA) as obtained from the multipole
model analysis is opposite to the directly determined scaling (see the previous section). In
the multipole model the scaling of the L shell is used to compensate for the deficiencies
of the model, such as it not being possible to describe the charge modulation in the core
region of the theoretical valence charge densities. The M-shell scaling factor shown in
table 5 is also lower than reported previously [1, 23] on the basis of a smaller data set
than that used here. The M-shell scaling in the multipole model for silicon was found to
depend on the number of structure factors included in the refinement [9]. As the number of
reflections included in the fit increases from 18 for the CH data set to 31, the scaling of the
M shell changes from negative∼4.2% (expansion) to positive 1.2% (contraction) for the
LDA charge density [9]. This results from the reduced weight of low-order structure factors
in the refinement. Such dependence highlights the deficiency of the multipole model, and
raises questions about the significance of the individual fitting parameters. The residual
of the model fit for the LDA is plotted in figure 8, showing that substantial systematic
differences remain. TheR-factor of the fit to the theoretical static charge density is of the
same order of magnitude as the best agreement between theory and experiment.

Table 5. Parameters of the multipole model fitting. For details, see the text.

k (L shell) k (M shell) O H α R-factor

Experiment 0.9998(5) 0.971(8) 0.37(2)−0.14(2) 4.76(10) 0.146%
LDA 1.0013 0.970 0.340 −0.0794 4.70 0.093%
GGA (PW91) 1.0013 0.967 0.355 −0.0841 4.67 0.094%

Figure 8. The form factor difference between the fitted and theoretical scattering factors of the
LAPW method obtained using the PW91-GGA.

For relative comparisons, the M-shell scaling and the model parameters for the third-
order Kubic harmonics terms are found to be very similar for the theoretical and experimental
charge densities. The main difference lies in the L-shell scaling and the coefficient for the
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fourth-order term, where the former is probably due to the modulation of charge density
in the core region in the theoretical LAPW charge density, as discussed before. The anti-
centrosymmetric third-order term transfers charge from an anti-bonding to a bonding region.
The fourth-order term removes charge from the〈100〉 to the〈111〉 direction, enhancing the
Si–Si bond and reducing the variations in the anti-bonding region [35]. The results of
table 5 indicate that the experimental charge density contains a stronger fourth-order term
than theory, which is evident from the stronger Si–Si bond found in the experimental data.

7. Effects of anharmonic vibration

The problem of anharmonic thermal vibration has been mentioned in section 2. Here we will
discuss whether there is any evidence of anharmonic thermal vibration in the experimental
structure factors of table 1. In the isolated-atom treatment of anharmonicity [27], the
anharmonic thermal vibration of the Kubic term is given by

Ta = Th
(

2π

γ a0

)3

(KBT )
2βhkl (9)

with Th = exp(2π2KBTg
2/γ ) as the harmonic temperature factor. The anharmonic term

vanishes for those reflections where one of the(h, k, l) indices is equal to 0 and for those
satisfyingh+ k + l = 4n. Anharmonic vibrations have the largest effects on (555) among
the reflections included in table 1. Figure 9 shows the effect of anharmonicity on the MCDF
scattering factor withβ = 3.38 eV Å−3. The arrows are drawn only for those reflections
with a relatively large correction term. With the exception of the case for (553), all of
these ‘corrections’ worsen the agreement with experiment. From the theoretical calculation,
we expect that crystal bonding will cause a change in the structure factor of high-order
reflections, such as (555) and (753), of less than 5×10−3 electrons/atom. Taking this estimate
into consideration, the magnitude of the change of the (555) and (753) reflections due to
anharmonicity pushes them far outside the experimental error bar. Thus the measured x-ray
structure factors indicate a much smallerβ-value, in agreement with [23]. Neutron and x-ray
measurements by Batterman and co-workers [39] give a low bound ofβ = 1.38 eV Å−3;
this results in an anharmonic term of about 6×10−3 electrons/atom for the (555) reflection,
which is of the same order of magnitude as the change in high-order structure factors due to
the crystal bonding. Therefore the determination of the anharmonicity from measured room

Figure 9. Effects of anharmonic thermal vibrations on the scattering factors withβ =
3.38 eV Å−3. The MCDF theoretical model is used for illustration.
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temperature structure factors requires a better theoretical model for the high-order structure
factors, which currently is not available. It is also obvious that the small upper limit of the
anharmonic effects does not alter our previous comparisons in a significant way.

8. Discussion

The structure factors of high-order reflections are dominated by the contributions from the
core electrons. Comparison between the experimental and theoretical structure factors of
reflection (440) and higher shows that the best agreement is obtained with the Hartree–Fock
approximations. Among the atomic models, the newly calculated atomic charge density of
the MCDF method seems to be the best, but the difference between these MCDF results
and the relativistic Hartree–Fock results of Doyle and Turner, as listed in theInternational
Tables for Crystallography, is small. The experimentally determined Debye–Waller factor
of Si depends on the atomic charge density used. For instance, using the non-relativistic
HF densities of Clementi and Roetti results in a significantly lower Debye–Waller factor.

The highest accuracy of atomic charge densities is probably that given by the MCDF
densities. We find a significant difference between these orbital densities and DS densities
obtained within the LDA. The differences are reduced by using GGAs. The PW91-GGA
gives a small but significant improvement for all orbital densities. The GGA of Engel and
Vosko, which sacrifices the accuracy of the exchange energy for a better description of the
exchange potential, yields even more accurate core densities, but for the valence states the
EV-GGA is even worse than LDA. A new functional combining both the advantages of the
EV-GGA in the core region and the better valence electron description in the PW91-GGA
would be highly desirable.

Both the experimental and the theoretical charge-density difference maps clearly show
the covalent bond of silicon. The overall bonding distribution has an oval shape. The
bonding peak is slightly elongated along the bond in the experimental map, while the
LAPW map has a more symmetric bonding peak. This is due to a larger fourth-order
Kubic harmonic term in the experimental charge density, as found in the multipole model
refinement. The theoretical LAPW map also shows a nodal-type modulation of valence
electrons in the core region. Aχ2-test shows that this modulation of the structure factors
is too small to be detected with the current experimental accuracy. It should be noted that
this modulation is not present in the calculated difference map (figure 2(c) of Pisaniet al
[11]) in the HF-LCAO method. However, it is not clear whether the difference is due to the
approximations for the exchange and correlation potential or the basis functions in these two
methods. The chemical significance of a valence charge modulation in the core region, if it
does exist, is not yet clear, but may be the result of orthogonalization to slightly modulated
core wave functions. The traditional picture of chemical bonding involves the redistribution
of outer valence electrons. Experimentally, this type of change in the core region is very
difficult to detect even with improved accuracy because of the thermal vibrations. The
scaling of the electron density in the core region and the determination of the Debye–Waller
factor are highly correlated, and thus it is difficult to separate them. The effect of crystal
bonding as predicted by LAPW-LDA and GGA (PW91) calculations is very similar, as can
be seen from the difference maps of figure 5.

Figure 10 plots the form factor difference1f = f crystal− f atom between the crystal
and the atom for both of the GGAs (PW91 and EV) and the LDA. The PW91-GGA and
the LDA give similar values of1f . This clearly shows that the difference in the structure
factors between the GGA (PW91) and LDA comes from the atom. The GGA of Engel
and Vosko gives a different1f at low angles, especially for the lowest (111) reflection.
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Figure 10. The form factor difference between the LAPW crystal and spherical atom for both
of the GGAs and the LDA.

For the experimental1f , the atomic reference of the MCDF [17] was used. The largest
difference between this, the MCDF of Wanget al [19] and the configuration interaction of
[20] is for the (111) structure factor (see table 1). Use of the latter two as atomic references
will significantly reduce the value of1f for the (111) reflection, and brings it closer to the
GGA (PW91) and LDA values.

The charge density of silicon can be reasonably parametrized using a multipole model
with an R-factor of about 0.15% for the experimental measurements. However, the
significance of individual parameters is undermined by the ambiguity of separating a
stationary crystal charge density, the residual systematic difference and the dependence
of the parameters on the number of reflections included. In the multipole model refinement
of the LAPW charge density, the scaling of the L-shell electrons shows a 0.13% contraction,
while the direct comparison of charge densities indicates a 0.04% to 0.09% expansion of
L-shell electrons. The scaling of M-shell electrons depends on the number of reflections
included in the refinement, a fact first pointed out by Luet al [9]. As the number of
reflections included increases from 18 for the CH data set to 31, the scaling of the M shell
changes from negative∼4.2% (expansion) to positive 1.2% (contraction) [9]. A contraction
of atoms in the crystal will lead to a smaller mean potential in the crystal, and is more
consistent with the recent measurement of [21].

The best agreement with experimental structure factors is currently obtained with the
LAPW method using the PW91-GGA [12] for exchange and correlation. TheR-factor
is about 0.13% and the GOF is about 8.8 using the averaged estimated standard error of
2.2× 10−3 electrons/atom for the experimental scattering factors. The significance of the
residual difference between theory and experiment depends on the experimental accuracy.
There are a number of ways to estimate the experimental accuracy. One is from the scatter of
the five measurements, which gives an averaged standard error of 4.7×10−3 electrons/atom.
The standard errors listed in table 1 are the averaged estimated errors, which are calculated
by considering the sources of error and their effects in the measurement, and indicate the
precision of the measurement. Errors can also be estimated from the scatter of each reflection
from the averaged value for a particular data set. Although the five sets of measurements
were made by similar methods, the experimental details differ quite considerably. A better
sense of the experimental accuracy would be given by the standard error of the latest Saka
and Kato measurements, which is about 3.6× 10−3 electrons/atom. Thus we have a lower
and an upper limit of the averaged errors of 2.2 and 4.7×10−3 electrons/atom, respectively,
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and the accuracy of the latest SK measurements falls in the middle. The GOFs of table 1
and 2 were calculated with the averaged standard error of 2.2×10−3 electrons/atom. If 3.6
or 4.7×10−3 electrons/atom are used, the best GOF drops to about 3.3 and 1.9, respectively.
Either way, there is significant room for improvement in the agreement between theory and
experiment.

9. Conclusions

From the study of the experimental and theoretical charge densities of silicon, we reach the
following conclusions.

(i) The core electron densities are best described by atomic theories based on the
(relativistic) Hartree–Fock approximation improved by extensive correlation treatments
(e.g. the MCDF one). Within DFT, Engel and Vosko’s version of the GGA for treating
exchange and correlation effects comes closest. The GGA of Perdew and Wang, PW91,
gives a better description than the LDA, but it is less accurate than the EV-GGA.

(ii) The GGA of Perdew and Wang, PW91, and the LDA give the best description of
bonding, which is the redistribution of mostly valence electrons in crystals. However, the
Engel–Vosko GGA deviates significantly.

(iii) It is desirable to find a density functional which combines the advantages of the
GGA of EV for core electrons and the PW91-GGA for the valence electrons.

These conclusions are expected to remain valid for other systems. However, similar
tests require highly accurate experimental structure factors to be available.
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